Cassini-Huygens Gas Chromatograph Mass Spectrometer: First Results Interplanetary Probe Workshop #3 Athens, Greece Hasso B. Niemann and the GCMS Team NASA Goddard Space Flight Center Greenbelt, MD 20771 #### The GCMS Team #### H. Niemann, Principle Investigator, NASA GSFC - S. K Atreya², S. J. Bauer³, K. Biemann¹⁰, G.R. Carignan², J.E. Demick¹, T. Donahue², R. L. Frost⁷, D. Gautier⁴, J. A. Haberman¹, D.N. Harpold¹, D.M. Hunten⁵, G. Israel⁶, J. I. Lunine⁵, W. T. Kasprzak¹, K. Mauersberger¹¹, T.C. Owen⁸, M. Paulkovich¹, F. Raulin⁹, E. Raaen¹, S. H. Way¹ - 1. National Aeronautics and Space Administration - 2. University of Michigan, Ann Arbor, MI 48109-2143, USA - 3. Institute for Meteorology and Geophysics, University of Graz - 4. LESIA, Observatoire de Paris-Meudon - 5. Lunar and Planetary Laboratory, University of Arizona - 6. Service d'Aéronomie du CNRS - 7. University of Alabama, CMC - 8. University of Hawaii - 9. Laboratoire Interuniversitaire des Systèmes Atmosphériques, Université Paris 12 et Paris 7 - 10. Massachusetts Institute of Technology - 11. Max Planck Institute # NASA ### Operating Principle ### GCMS Internal Design ### Flight Configuration **Exhaust** Tube Pressurized Housing **Mounting** Flange **Prom Board** Outlet Break off **Electrical Connectors** Thermal Inlet Isolator GC Columns Inlet Break off Ion Pump HV Supplies # NASA #### Heated Sample Inlet Inlet Exhaust Outlet Front Shield #### Inlet Thermistor #### Inlet and Outlet Locations ## Descent Sequence #### Instrument Performance - The instrument executed the pre-programmed sequence as expected - Data were taken from about 146 km altitude to the surface - 2h27m descent operation yielding 5634 mass spectra - 1h10m surface operation yielding 2692 mass spectra - Ion source 5 failed to operate early in the descent - Loss of data from one gas chromatograph column which resolved CO and N_2 - Loss of channel A effected time resolution and signal statistics, no loss of essential data #### Early Data Analysis • Data included both 25 eV and 70 eV electron energies, as well as data that both overflowed bit counters and rolled over the detector # Upper Atmosphere Averaged Spectrum (130-120 km) # Rare Gas Experiment Averaged Spectrum (with Background Subtracted) #### Enrichment Cell Averaged Spectrum Lower Atmosphere Averaged Spectrum #### Averaged Surface Spectrum #### Isotope Ratios - ¹²C/¹³C and ¹⁴N/¹⁵N in the atmosphere were determined from methane (¹²CH₄ and ¹³CH₄ at m/z of 16 and 17) and nitrogen (¹⁴N¹⁴N and ¹⁵N¹⁴N at m/z of 28 and 29) - D/H was determined from H₂ and HD - Isotope ratios were calculated in altitude ranges with the best instrumental and statistical conditions - Errors presented are due to signal statistics | Ratio | GCMS | Altitude for GCMS Calculations | |-------------------------------|---------------------------------|--------------------------------| | $^{14}N/^{15}N$ | 183 <u>+</u> 5 | 40.9 km-35.9 km | | 12C/13C | 82.3 <u>+</u> 1 | 18.2 km-6.14 km | | D/H | $(2.1 \pm 0.04) \times 10^{-4}$ | 124.9 km- 66.8 km | | $^{40}\text{Ar}/(N_2 + CH_4)$ | $(4.32 \pm 0.1) \times 10^{-5}$ | 10 km to surface | #### Methane Mole Fraction Altitude Profile ## Surface Response of N₂ and CH₄ # Surface Response of C₂H₆ and CO₂ ## Surface Response of Cyanogen (C₂N₂) #### Summary - Increase in methane mole fraction near and at surface suggests a humid atmosphere and liquid methane in near sub-surface - Primordial noble gases in low concentration- upper limit for ³⁶Ar is 3x10⁻⁷; Kr, Xe is 10⁻⁸ - As predicted, organic molecules were not detected in large quantities in the atmosphere - Ethane, Carbon dioxide and Cyanogen detected on the surface - Landed on organic rich surface #### Lessons Learned - The mission design was appropriate - In hindsight additional surface oriented measurements would have been useful, including ACP surface measurements